

CALCIUM

Total body Calcium 1 – 1.5 kg 99% in Bones & Teeth 1% in body Fluids and tissues

SOURCES

Milk and dairy products
Eggyolk , Fish, G.L.V , beans

Cow's milk 100mg/100ml Human milk 30mg/100ml

RECOMMENDED DAILY ALLOWANCE (RDA):

Adults – 500 mg /day

Children - 1200 mg /day

Pregnancy & 1500 mg /day Lactation

ABSORPTION

SITE: first part and second part of duodenum

Calcium absorbed against concentration gradient and requires energy and a carrier protein.

Factors affecting absorption:

INCREASE THE ABSORPTION RATE

- 1.CALCITRIOL
- 2. PARATHYROID HORMONE
- 3.ACIDITY
- 4.AMINOACIDS Lysine and Arginine

FACTORS THAT DECREASE ABSORPTION RATE:

- 1.PHYTATES
- 2.OXALATES
- 3.HIGH PHOSPHATE CONTENT
 OPTIMUM RATIO OF CALCIUM TO PHOSPHATE
 CONTENT— 1:2 TO 2:1---- allows maximum absorption.
- 4.FREE FATTY ACIDS (FFA)
 Ca+ FFA In soluble calcium soaps (Steatorrhoea)
- 5. ALKALINE MEDIUM
- HIGH DIETARY FIBRE

1.Mineralisation of Bones and teeth. Bone is

a mineralized connective tissue.

It contains organic (collagen – protein) and inorganic (mineral) Component,

HYDROXY APATITE, Ca10(Po4)6 (OH),

2. Coagulation of Blood

Calcium is factor IV in coagulation cascade.

Prothromlin (factor II) contains Gla(γ Carboxy glutamate) Residues.

Calcium forms a bridge between Gla residues of prothrombin and membrane phospholipids of platelets

3. Activation of enzymes

Calmodulin is a Calcium binding regulatory protein molwt 17000

Calmodulin can bind with 4 calcium ions

Mechanism of action of Calcium

```
Ca<sup>++</sup> + Calmodulin
     Ca-bound-calmodulin
             ----> Active kinase
Kinase-
                     --> Phosphorylated enzyme
                         Biological effect
```

Mediated by Calmodulin

- 1. Adenyl cyclase
- 2. Cat dependent protein kinases
- 3. Ca⁺-Mg⁺ ATPase
- 4. Glycogen synthase
- 5. Phospholipase C
- 6. Phosphorylase kinase
- 7. Pyruvate carboxylase
- 8. Pyruvate dehydrogenase
- 9. Pyruvate kinase.

Mediated by Calmodulin

- 1. Adenyl cyclase
- 2. Ca" dependent protein kinases
- 3. CA"-Mg" ATPase
- 4. Glycerol 3 phosphate dehydrogenase
- 5. Glycogen synthase
- 6. Phospholipase C
- 7. Phosphorylase kinase
- 8. Pyruvate carboxylase
- 9. Pyruvate dehydrogenase
- 10. Pyruvate kinase.

5. NOIVOS

Calcium is necessary for transmission of nerve impulses from pre-synaptic to post – synaptic region.

6. Secretion of hormones Calcium mediates secretion of Insulin,

parathyroid hormone, calcitonin, vasopressin, etc. from the cells

7. Second Messenger in signal Transduction

Calcium and cyclic AMP are second messengers of different hormones. One example is glucagon. Calcium is used as second messenger in systems involving G proteins and inositol triphosphate.

8. MYOCARDIUM

In myocardium, Ca⁺⁺ prolongs systole. In hypercalcemia cardiac arrest is seen in systole.

Caution: when calcium is administered intravenously, it should be given very slowly.

Different forms of circulating calcium.

Normal serum level of calcium -- 9 to 11 mg /dl

Ionized calcium -- 5 mg/dl

Calcium complexed with Po4, citrate

-- 1 mg/dl

Protein bound Calcium

-- 4 mg/dl

IONIZED CALCIUM IS METABOLICALLY / BIOLOGICALLY ACTIVE FORM.

- Hypoalbuminemia results in ↓ of plasma total Calcium levels
- Each 1gm of Albumin ↓ causes ↓ of o.8mg/dl of Calcium
- Hyperproteinemias (paraproteinemia) are associated with ↑ plasma total Calcium level
- Acidosis favours release of ionized Calcium.
- Alkalosis favours binding of Calcium and decreases ionized Calcium level, but total calcium is normal.

Calcium homeostasis:

Plasma calcium is maintained within narrow limits.

Major factors involved in homeostasis

- 1.Calcitriol
- increase calcium
- 2. Parathormone increase calcium

decrease calcium

Calcitriol stimulates calbindin synthesis and increases calcium absorption. C = calcitriol; R = receptor; CR = calcitriol receptor complex; CB = calbindin

Parathormone

- Secreted by chief cells of parathyroid.
- Release of PTH is mediated by c-AMP.
- Three independent sites of action.
 they are bone, kidney and intestine.

•All the 3 actions of PTH increase serum calcium level.

BONE:

demineralisation /decalcification

induces pyrophosphatase in them.

solubilise calcium

bone

resorption

KIDNEY

PTH has direct action.

decreases renal excretion of calcium (mainly

by increased reabsorption of calcium from distal

tubules) and increases phosphate excretion.

Intestine

PTH stimulates 1 –hydroxylation of 25-cholecalciferol

Forms calcitriol

Calcitriol induces synthesis of calbindin

Calbindin increase calcium absorption from intestine

Thereby increasing calcium level in blood.

Calcitonin:

secreted by parafollicular cells of thyroid.

- Calcitonin promotes calcification by increasing the activity of osteoblasts.
- Calcitonin decreases bone resorption.
- It increases the excretion of Ca in urine.
- Overall it decreases blood Ca level.

HOMEOSTASIS OF SERUM CALCIUM

Figure 28.24
Response to low plasma calcium.

Figure: 17.2: Homeostasis of plasma calcium 25-HCC = 25-Hydroxycholecalciferol and 1:25 DHCC = 1:25 Dihydroxycholecalciferol

Importance of Ca: P ratio

Product of CaxP(10x4)

Normal Adults – 40 Children – 50 <30 Rickets

Normal Ca: **P** ratio is essential for bone mineralisation.

Hypercalcemia:

causes:

1.hyperparathyroidsm – characterised by increase serum calcium decrease in serum phosphate and increase in alkaline phosphatse activity.

- Multiple myeloma
- 3. Pagets disease
- 4. Secondary bone cancer

Clinical features of Hypercalcemia

Neurological symptoms

Depression, Confusion, irritability

- Generalised Muscle Weakness
- GIT: Anorexia
 Abdominal Pain
 Nausea
 Vomiting
- CVS:

Cardiac arrythmias

Hypocalcemia:

serum calcium level < 8.8 mg/dl ---- hypocalcemia.

Serum calcium level < 7 mg/dl -- TETANY.

Causes:

- 1.accidental surgical removal of parathyroid
- 2. Pseudohypoparathyroidism lack of end organ response
- 3.Renal disease
- 4. Liver disease
- 5. Vitamin D deficiency

- 6. Malabsorption syndromes
- 7. Renal rickets
- 8. osteoporosis

Clinical features of Tetany:

- Neuromuscular irritability
- Spasms- laryngeal spasm lead to death.
- Convulsions
- Muscular cramps

ECG changes -Q-T interval increased

hank Mou!